Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
J Am Heart Assoc ; 13(8): e032734, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563373

RESUMO

BACKGROUND: The limited ability of enzyme replacement therapy (ERT) in removing globotriaosylceramide from cardiomyocytes is recognized for advanced Fabry disease cardiomyopathy (FDCM). Prehypertrophic FDCM is believed to be cured or stabilized by ERT. However, no pathologic confirmation is available. We report here on the long-term clinical-pathologic impact of ERT on prehypertrophic FDCM. METHODS AND RESULTS: Fifteen patients with Fabry disease with left ventricular maximal wall thickness ≤10.5 mm at cardiac magnetic resonance required endomyocardial biopsy because of angina and ventricular arrhythmias. Endomyocardial biopsy showed coronary small-vessel disease in the angina cohort, and vacuoles in smooth muscle cells and cardiomyocytes ≈20% of the cell surface containing myelin bodies at electron microscopy. Patients received α-agalsidase in 8 cases, and ß-agalsidase in 7 cases. Both groups experienced symptom improvement except 1 patients treated with α-agalsidase and 1 treated with ß-agalsidase. After ERT administration ranging from 4 to 20 years, all patients had control cardiac magnetic resonance and left ventricular endomyocardial biopsy because of persistence of symptoms or patient inquiry on disease resolution. In 13 asymptomatic patients with FDCM, left ventricular maximal wall thickness and left ventricular mass, cardiomyocyte diameter, vacuole surface/cell surface ratio, and vessels remained unchanged or minimally increased (left ventricular mass increased by <2%) even after 20 years of observation, and storage material was still present at electron microscopy. In 2 symptomatic patients, FDCM progressed, with larger and more engulfed by globotriaosylceramide myocytes being associated with myocardial virus-negative lymphocytic inflammation. CONCLUSIONS: ERT stabilizes storage deposits and myocyte dimensions in 87% of patients with prehypertrophic FDCM. Globotriaosylceramide is never completely removed even after long-term treatment. Immune-mediated myocardial inflammation can overlap, limiting ERT activity.


Assuntos
Cardiomiopatias , Doença de Fabry , Cardiopatias , Miocardite , Triexosilceramidas , Humanos , Doença de Fabry/complicações , Doença de Fabry/tratamento farmacológico , Doença de Fabry/patologia , alfa-Galactosidase/uso terapêutico , alfa-Galactosidase/metabolismo , Terapia de Reposição de Enzimas/métodos , Cardiomiopatias/etiologia , Cardiomiopatias/complicações , Miócitos Cardíacos/metabolismo , Miocardite/induzido quimicamente , Angina Pectoris/complicações , Cardiopatias/complicações , Inflamação/metabolismo
2.
Science ; 383(6684): eadg0564, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359115

RESUMO

Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.


Assuntos
Anticorpos Antivirais , Linfócitos B , Centro Germinativo , Infecções por Orthomyxoviridae , Orthomyxoviridae , Triexosilceramidas , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Animais , Camundongos , Camundongos Knockout , Humanos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958836

RESUMO

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Assuntos
Diabetes Mellitus , Doença de Fabry , Nefropatias , Insuficiência Renal , Humanos , Camundongos , Animais , Doença de Fabry/metabolismo , Fatores de Proteção , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Insuficiência Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Triexosilceramidas/metabolismo , alfa-Galactosidase/genética
5.
Transplant Proc ; 55(4): 788-791, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37230899

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked inborn error of lysosomal storage disorder, a deficiency in lysosomal hydrolase α-galactosidase A activity due to pathogenic variants in the GLA gene. Accumulation of globotriaosylceramide in multiple organs contributes to end-stage kidney disease, heart failure, and cerebrovascular accidents. METHODS: We began the FD screening program by involving male patients older than 20 years of age who were on chronic dialysis, had a post-kidney transplantation, and were part of the Pre-End Stage Renal Disease Program in our hospital. α-galactosidase A activity was detected through an initial dried blood spots screen assay, followed by levels of lyso-globotriaosylceramide and sequencing of the GLA gene when screening patients with suspected FD to confirm their diagnosis. RESULTS: A total of 1812 patients had been FD screened, with the prevalence of FD being approximately 0.16 % (3/1812) up until June 2022. Interestingly, we confirmed a family cluster (2 sons and their mother) of having the c.936+919G>A mutation (designated GLA IVS4) with hypertrophic cardiomyopathy in Taiwan and another with the mutation c.644A>G (p.Asn215Ser), a more common later-onset variant reported in people of European or North American descent. Two patients were confirmed with cardiomyopathy through a cardiac biopsy, with their cardiac function later reversed after enzyme replacement therapy. CONCLUSIONS: The FD screening test detects chronic kidney disease due to an unknown etiology and prevents other organ complications. Early detection of FD is crucial for reversing target organ damage with enzyme replacement therapy.


Assuntos
Doença de Fabry , Falência Renal Crônica , Feminino , Humanos , Masculino , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Doença de Fabry/terapia , alfa-Galactosidase/genética , Taiwan/epidemiologia , Triexosilceramidas , Mutação , Falência Renal Crônica/cirurgia , Falência Renal Crônica/complicações
6.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014703

RESUMO

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9-mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.


Assuntos
Doença de Fabry , Podócitos , Humanos , Podócitos/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Fabry/genética , Doença de Fabry/tratamento farmacológico , Doença de Fabry/patologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , alfa-Galactosidase/uso terapêutico , Rim/metabolismo , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Triexosilceramidas/uso terapêutico
7.
Ophthalmic Plast Reconstr Surg ; 39(2): e52-e55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36728127

RESUMO

Fabry disease is an X-linked lysosomal storage disease resulting from an error in the glycosphingolipid metabolic pathway, which leads to accumulation of globotriaosylceramide in lysosomes of the skin, kidneys, heart, brain, and other organs. There are no existing reports of histologically proven lacrimal gland involvement in Fabry disease. The authors report the case of a 26-year-old male with Fabry disease who presented with bilateral upper eyelid dermatochalasis, steatoblepharon, and prolapsed lacrimal glands. The patient underwent surgical repair of the upper eyelids and biopsy of the lacrimal glands. The pathologic assessment demonstrated lamellated intracytoplasmic inclusions characteristic of Fabry disease. The prevalence of globotriaosylceramide lacrimal gland deposition in Fabry disease and the effect on lacrimal gland morphology and function have yet to be determined.


Assuntos
Doença de Fabry , Aparelho Lacrimal , Masculino , Humanos , Adulto , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Aparelho Lacrimal/patologia , Triexosilceramidas/metabolismo , Pele/patologia
8.
J Inherit Metab Dis ; 46(1): 143-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220782

RESUMO

Fabry disease (FD) is an X-linked inherited lysosomal metabolism disorder in which globotriaosylceramide (Gb3) accumulates in various organs resulting from a deficiency in alpha-galactosidase A. The clinical features of FD include progressive impairments of the renal, cardiac, and peripheral nervous systems. In addition, patients with FD often develop neuropsychiatric symptoms, such as depression and dementia, which are believed to be induced by the cellular injury of cerebrovascular and partially neuronal cells due to Gb3 accumulation. Although the analysis of autopsy brain tissue from patients with FD showed no accumulation of Gb3, abnormal deposits of Gb3 were found in the neurons of several brain areas, including the hippocampus. Therefore, in this study, we generated induced pluripotent stem cells (iPSCs) from patients with FD and differentiated them into neuronal cells to investigate pathological and biological changes in the neurons of FD. Neural stem cells (NSCs) and neurons were successfully differentiated from the iPSCs we generated; however, cellular damage and morphological changes were not found in these cells. Immunostaining revealed no Gb3 accumulation in NSCs and neurons. Transmission electron microscopy did not reveal any zebra body-like structures or inclusion bodies, which are characteristic of FD. These results indicated that neuronal cells derived from FD-iPSCs exhibited normal morphology and no Gb3 accumulation. It is likely that more in vivo environment-like cultures are needed for iPSC-derived neurons to reproduce disease-specific features.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Masculino , Humanos , Doença de Fabry/genética , Células-Tronco Pluripotentes Induzidas/patologia , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Fenótipo , Neurônios/metabolismo , Triexosilceramidas/metabolismo
9.
Neurology ; 99(19): e2188-e2200, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344272

RESUMO

BACKGROUND AND OBJECTIVES: There is accumulating evidence in the literature indicating a strong correlation between Fabry disease (FD) phenotypes and specific sequence variations in the Galactosidase Alpha (GLA) gene. Among them, the potential pathogenicity and clinical relevance of D313Y variation in patients with FD remain debated. METHODS: We performed a systematic review and meta-analysis of studies reporting D313Y as single occurring variant in the GLA gene and sought to evaluate (1) the prevalence of D313Y variation in different populations with or without clinical manifestations of FD, (2) the clinical FD phenotype in D313Y-positive patients, and (3) the proportion of D313Y-positive patients presenting abnormal laboratory findings (alpha-galactosidase-A deficiency or globotriaosylceramide accumulation). RESULTS: Forty cohorts comprising 211 individuals with D313Y variation among 42,723 participants with available GLA gene-sequencing data were included. Patients highly suspected for FD had a higher prevalence of D313Y variation (4.9%, 95% CI 1.6%-9.9%; I2 = 95.5%) compared with the general population (0%, 95% CI 0%-0.1%; I2 = 1.9%; p = 0.004). The prevalence of D313Y variation was 0.6% (95% CI 0.3%-1%; I2 = 74.1%), 0.4% (95% CI 0.2%-0.7%; I2 = 0%), and 0.3% (95% CI 0.2%-0.4%; I2 = 0%) in patients presenting with neurologic, cardiac, or renal manifestations, respectively. D313Y was associated with a milder, late-onset FD phenotype, as indicated by the mean patient age of 51 years (95% CI 44-59; I2 = 94%) and the evidence of alpha-galactosidase A deficiency and globotriaosylceramide accumulation in 26.7% (95% CI 15.3%-40%; I2 = 34%) and 16.2% (95% CI 8%-26.4%; I2 = 35%) of cases, respectively. D313Y-positive patients displayed predominantly neurologic FD manifestations (58.1%, 95% CI 37.7%-77.1%; I2 = 78%), with central and peripheral nervous system (CNS/PNS) involvement noted in 28.2% (95% CI 15.4%-43.2%; I2 = 51%) and 28.5% (95% CI 17.8%-40.5%; I2 = 61%) of cases, respectively. DISCUSSION: D313Y variation seems to correlate with an atypical, mild late-onset phenotype with predominantly neurologic FD manifestations. Monitoring for CNS/PNS involvement is thus paramount to identify D313Y-positive patients with latent or early-FD pathology, which may qualify for enzyme-replacement therapy or chaperone treatment.


Assuntos
Doença de Fabry , Humanos , Doença de Fabry/epidemiologia , Doença de Fabry/genética , alfa-Galactosidase/genética , Mutação/genética , Triexosilceramidas
11.
J Pharm Sci ; 111(10): 2719-2729, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905973

RESUMO

Globotriaosylceramide (Gb3 or CD77) is a tumor-associated carbohydrate antigen implicated in several types of cancer that serves as a potential cancer marker for developing target-specific diagnosis and therapy. However, the development of Gb3-targeted therapeutics has been challenging due to its carbohydrate nature. In the present work, taking advantage of its natural pentamer architecture and Gb3-specific targeting of shiga toxin B subunit (StxB), we constructed a pentameric antibody recruiting chimera by site-specifically conjugating StxB with the rhamnose hapten for immunotherapy of colorectal cancer. The Sortase A-catalyzed enzymatic tethering of rhamnose moieties to the C terminus of Stx1B and Stx2B had very moderate effect on their pentamer architectures and thus the resultant conjugates maintained the potent ability to bind to Gb3 antigen both immobilized on an assay plate and expressed on colorectal cancer cells. All StxB-rhamnose constructs were capable of efficiently mediating the binding of rhamnose antibodies onto HT29 colorectal cancer cells, which was further shown to be able to induce cancer cell lysis by eliciting potent antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in vitro. Finally, the best StxB-rhamnose conjugate, i.e. 1B-3R, was confirmed to be able to inhibit the colorectal tumor growth using a HT29-derived xenograft murine model. Taken together, our data demonstrated the potential of repurposing StxB as an excellent multivalent scaffold for developing Gb3-targeted biotherapeutics and StxB-rhamnose conjugates might be promising candidates for targeted immunotherapy of Gb3-related colorectal cancer.


Assuntos
Neoplasias Colorretais , Toxina Shiga , Animais , Antígenos Glicosídicos Associados a Tumores , Neoplasias Colorretais/tratamento farmacológico , Haptenos , Humanos , Imunoterapia , Camundongos , Ramnose , Toxina Shiga/metabolismo , Triexosilceramidas
12.
Toxicon ; 216: 115-124, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35835234

RESUMO

Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.


Assuntos
Infecções por Escherichia coli , Toxina Shiga II , Animais , Citocinas/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Toxina Shiga/metabolismo , Toxina Shiga II/toxicidade , Tálamo/metabolismo , Triexosilceramidas
13.
Kidney Int ; 102(1): 173-182, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483528

RESUMO

While females can suffer serious complications of Fabry disease, most studies are limited to males to avoid confounding by mosaicism. Here, we developed a novel unbiased method for quantifying globotriaosylceramide (GL3) inclusion volume in affected podocytes (F+) in females with Fabry disease independent of mosaicism leading to important new observations. All podocytes in male patients with Fabry are F+. The probability of observing random profiles from F+ podocytes without GL3 inclusions (estimation error) was modeled from electron microscopic studies of 99 glomeruli from 40 treatment-naïve males and this model was applied to 28 treatment-naïve females. Also, podocyte structural parameters were compared in 16 age-matched treatment-naïve males and females with classic Fabry disease and 11 normal individuals. A 4th degree polynomial equation best described the relationship between podocyte GL3 volume density and the estimation error (R2 =0.94) and was confirmed by k-fold cross-validation. In females, this model showed that age related directly to F+ podocyte GL3 volume (correlation coefficient (r = 0.54) and podocyte volume (r = 0.48) and inversely to podocyte number density (r = -0.56), (all significant). F+ podocyte GL3 volume was significantly inversely related to podocyte number density (r = -0.79) and directly to proteinuria. There was no difference in F+ podocyte GL3 volume or volume fraction between age-matched males and females. Thus, in females with Fabry disease GL3 accumulation in F+ podocytes progresses with age in association with podocyte loss and proteinuria, and F+ podocyte GL3 accumulation in females with Fabry is similar to males, consistent with insignificant cross-correction between affected and non-affected podocytes. Hence, these findings have important pathophysiological and clinical implications.


Assuntos
Doença de Fabry , Podócitos , Doença de Fabry/complicações , Feminino , Humanos , Masculino , Proteinúria/etiologia , Triexosilceramidas
15.
J Nanobiotechnology ; 20(1): 125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264192

RESUMO

BACKGROUND: Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid-polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. RESULTS: Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. CONCLUSIONS: PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.


Assuntos
Doença de Fabry , Nanopartículas , Animais , Autofagia , Modelos Animais de Doenças , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/patologia , Rim/patologia , Masculino , Camundongos , Triexosilceramidas , Zircônio
16.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163813

RESUMO

Fabry disease is an X-linked lysosomal multisystem storage disorder induced by a mutation in the alpha-galactosidase A (GLA) gene. Reduced activity or deficiency of alpha-galactosidase A (AGAL) leads to escalating storage of intracellular globotriaosylceramide (GL-3) in numerous organs, including the kidneys, heart and nerve system. The established treatment for 20 years is intravenous enzyme replacement therapy. Lately, oral chaperone therapy was introduced and is a therapeutic alternative in patients with amenable mutations. Early starting of therapy is essential for long-term improvement. This review describes chaperone therapy in Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Doença de Fabry/genética , Doença de Fabry/metabolismo , Humanos , Masculino , Mutação , Tempo para o Tratamento , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
17.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885938

RESUMO

Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A gene (GLA) mutations, resulting in loss of activity of the lysosomal hydrolase, α-galactosidase A (α-Gal A). As a result, the main glycosphingolipid substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), accumulate in plasma, urine, and tissues. Here, we propose a simple, fast, and sensitive method for plasma quantification of lyso-Gb3, the most promising secondary screening target for FD. Assisted protein precipitation with methanol using Phree cartridges was performed as sample pre-treatment and plasma concentrations were measured using UHPLC-MS/MS operating in MRM positive electrospray ionization. Method validation provided excellent results for the whole calibration range (0.25-100 ng/mL). Intra-assay and inter-assay accuracy and precision (CV%) were calculated as <10%. The method was successfully applied to 55 plasma samples obtained from 34 patients with FD, 5 individuals carrying non-relevant polymorphisms of the GLA gene, and 16 healthy controls. Plasma lyso-Gb3 concentrations were larger in both male and female FD groups compared to healthy subjects (p < 0.001). Normal levels of plasma lyso-Gb3 were observed for patients carrying non-relevant mutations of the GLA gene compared to the control group (p = 0.141). Dropping the lower limit of quantification (LLOQ) to 0.25 ng/mL allowed us to set the optimal plasma lyso-Gb3 cut-off value between FD patients and healthy controls at 0.6 ng/mL, with a sensitivity of 97.1%, specificity of 100%, and accuracy of 0.998 expressed by the area under the ROC curve (C.I. 0.992 to 1.000, p-value < 0.001). Based on the results obtained, this method can be a reliable tool for early phenotypic assignment, assessing diagnoses in patients with borderline GalA activity, and confirming non-relevant mutations of the GLA gene.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Doença de Fabry/sangue , Glicolipídeos/sangue , Esfingolipídeos/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Cromatografia Líquida de Alta Pressão/economia , Humanos , Limite de Detecção , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/economia , Fatores de Tempo , Triexosilceramidas/sangue
18.
Drugs ; 81(17): 1969-1981, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34748189

RESUMO

Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A (AGAL/GLA) gene. The lysosomal accumulation of the substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) results in progressive renal failure, cardiomyopathy associated with cardiac arrhythmia, and recurrent strokes, significantly limiting life expectancy in affected patients. Current treatment options for FD include recombinant enzyme-replacement therapies (ERTs) with intravenous agalsidase-α (0.2 mg/kg body weight) or agalsidase-ß (1 mg/kg body weight) every 2 weeks, facilitating cellular Gb3 clearance and an overall improvement of disease burden. However, ERT can lead to infusion-associated reactions, as well as the formation of neutralizing anti-drug antibodies (ADAs) in ERT-treated males, leading to an attenuation of therapy efficacy and thus disease progression. In this narrative review, we provide a brief overview of the clinical picture of FD and diagnostic confirmation. The focus is on the biochemical and clinical significance of neutralizing ADAs as a humoral response to ERT. In addition, we provide an overview of different methods for ADA measurement and characterization, as well as potential therapeutic approaches to prevent or eliminate ADAs in affected patients, which is representative for other ERT-treated lysosomal storage diseases.


Assuntos
Anticorpos Neutralizantes/imunologia , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/tratamento farmacológico , Isoenzimas/uso terapêutico , Proteínas Recombinantes/uso terapêutico , alfa-Galactosidase/uso terapêutico , Formação de Anticorpos , Terapia de Reposição de Enzimas/efeitos adversos , Doença de Fabry/fisiopatologia , Humanos , Reação no Local da Injeção , Isoenzimas/efeitos adversos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Proteínas Recombinantes/efeitos adversos , Fatores de Risco , Triexosilceramidas/metabolismo , alfa-Galactosidase/efeitos adversos
19.
Toxins (Basel) ; 13(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34678982

RESUMO

Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Toxinas Shiga/farmacologia , Apoptose , Autofagia , Sistemas de Liberação de Medicamentos , Humanos , Ribossomos/efeitos dos fármacos , Toxinas Shiga/química , Transdução de Sinais/efeitos dos fármacos , Triexosilceramidas/metabolismo
20.
Int J Mol Sci ; 22(18)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576167

RESUMO

Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.


Assuntos
Colo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Globosídeos/metabolismo , Toxina Shiga/metabolismo , Triexosilceramidas/metabolismo , Linhagem Celular , Células Cultivadas , Cromatografia em Camada Delgada , Glicoesfingolipídeos/metabolismo , Humanos , Espectrometria de Massas , Sintaxina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...